추천 논문

제목Mechanisms of Action and Therapeutic Application of Glucagon-like Peptide-12023-09-19 23:14
작성자 Level 8

Mechanisms of Action and Therapeutic Application of Glucagon-like Peptide-1

https://www.cell.com/cell-metabolism/fulltext/S1550-4131(18)30179-7?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS1550413118301797%3Fshowall%3Dtrue



Glucagon-like peptide-1 (GLP-1) released from gut enteroendocrine cells controls meal-related glycemic excursions through augmentation of insulin and inhibition of glucagon secretion. GLP-1 also inhibits gastric emptying and food intake, actions maximizing nutrient absorption while limiting weight gain. Here I review the circuits engaged by endogenous versus pharmacological GLP-1 action, highlighting key GLP-1 receptor (GLP-1R)-positive cell types and pathways transducing metabolic and non-glycemic GLP-1 signals. The role(s) of GLP-1 in the benefits and side effects associated with bariatric surgery are discussed and actions of GLP-1 controlling islet function, appetite, inflammation, and cardiovascular pathophysiology are highlighted. Refinement of the risk-versus-benefit profile of GLP-1-based therapies for the treatment of diabetes and obesity has stimulated development of orally bioavailable agonists, allosteric modulators, and unimolecular multi-agonists, all targeting the GLP-1R. This review highlights established and emerging concepts, unanswered questions, and future challenges for development and optimization of GLP-1R agonists in the treatment of metabolic disease.

Keywords

incretin

diabetes

obesity

cardiovascular disease

inflammation

metabolism

G protein-coupled receptor

drug

hypertension

body weight

댓글
자동등록방지
(자동등록방지 숫자를 입력해 주세요)

Antibody, Microbiome, Mitochondria, Nanobodies, Protein engineering, Identification of Bacteria, Systems Biology, Structural biology,


Nanobodies

A comprehensive comparison between camelid nanobodies and single chain variable fragments

https://biomarkerres.biomedcentral.com/articles/10.1186/s40364-021-00332-6

The Therapeutic Potential of Nanobodies

https://link.springer.com/article/10.1007/s40259-019-00392-z

A potent SARS-CoV-2 neutralising nanobody shows therapeutic efficacy in the Syrian golden hamster model of COVID-19

https://www.nature.com/articles/s41467-021-25480-z

An ultrapotent synthetic nanobody neutralizes SARS-CoV-2 by stabilizing inactive Spike

https://www.science.org/doi/10.1126/science.abe3255

Antibody

Antibodies to combat viral infections: development strategies and progress

https://www.nature.com/articles/s41573-022-00495-3

Microbiome

Gut microbiota in human metabolic health and disease

https://www.nature.com/articles/s41579-020-0433-9

Current understanding of the human microbiome

https://www.nature.com/articles/nm.4517

A framework for microbiome science in public health

https://www.nature.com/articles/s41591-021-01258-0

Mitochondria

Nuclear-embedded mitochondrial DNA sequences in 66,083 human genomes

https://www.nature.com/articles/s41586-022-05288-7

Protein engineering

Advances in protein structure prediction and design

https://www.nature.com/articles/s41580-019-0163-x

https://www.nature.com/subjects/protein-engineering

Identification of Bacteria

16S rRNA 유전자 염기서열분석을 통한 임상 미생물학에서의 세균동정

https://kosen.kr/info/kosen/273696

16S rRNA 및 Internal Transcribed Spacer 염기서열 분석법을 이용한 세균 및 진균 동정

https://synapse.koreamed.org/upload/synapsedata/pdfdata/0105kjcm/kjcm-13-34.pdf