추천 논문

제목Rapid DNA Sequencing Technology Based on the Sanger Method for Bacterial Identification2023-09-11 12:45
작성자 Level 8

Rapid DNA Sequencing Technology Based on the Sanger Method for Bacterial Identification

https://www.mdpi.com/1424-8220/22/6/2130


Abstract

Antimicrobial resistance, a global health concern, has been increasing due to inappropriate use of antibacterial agents. To facilitate early treatment of sepsis, rapid bacterial identification is imperative to determine appropriate antibacterial agent for better therapeutic outcomes. In this study, we developed a rapid PCR method, rapid cycle sequencing, and microchip electrophoresis, which are the three elemental technologies for DNA sequencing based on the Sanger sequencing method, for bacterial identification. We achieved PCR amplification within 13 min and cycle sequencing within 14 min using a rapid thermal cycle system applying microfluidic technology. Furthermore, DNA analysis was completed in 14 min by constructing an algorithm for analyzing and performing microchip electrophoresis. Thus, the three elemental Sanger-based DNA sequencing steps were accomplished within 41 min. Development of a rapid purification process subsequent to PCR and cycle sequence using a microchip would help realize the identification of causative bacterial agents within one hour, and facilitate early treatment of sepsis.

Keywords: DNA sequence; DNA; PCR; cycle sequence; electrophoresis; Sanger method; rapid identification

댓글
자동등록방지
(자동등록방지 숫자를 입력해 주세요)

Antibody, Microbiome, Mitochondria, Nanobodies, Protein engineering, Identification of Bacteria, Systems Biology, Structural biology,


Nanobodies

A comprehensive comparison between camelid nanobodies and single chain variable fragments

https://biomarkerres.biomedcentral.com/articles/10.1186/s40364-021-00332-6

The Therapeutic Potential of Nanobodies

https://link.springer.com/article/10.1007/s40259-019-00392-z

A potent SARS-CoV-2 neutralising nanobody shows therapeutic efficacy in the Syrian golden hamster model of COVID-19

https://www.nature.com/articles/s41467-021-25480-z

An ultrapotent synthetic nanobody neutralizes SARS-CoV-2 by stabilizing inactive Spike

https://www.science.org/doi/10.1126/science.abe3255

Antibody

Antibodies to combat viral infections: development strategies and progress

https://www.nature.com/articles/s41573-022-00495-3

Microbiome

Gut microbiota in human metabolic health and disease

https://www.nature.com/articles/s41579-020-0433-9

Current understanding of the human microbiome

https://www.nature.com/articles/nm.4517

A framework for microbiome science in public health

https://www.nature.com/articles/s41591-021-01258-0

Mitochondria

Nuclear-embedded mitochondrial DNA sequences in 66,083 human genomes

https://www.nature.com/articles/s41586-022-05288-7

Protein engineering

Advances in protein structure prediction and design

https://www.nature.com/articles/s41580-019-0163-x

https://www.nature.com/subjects/protein-engineering

Identification of Bacteria

16S rRNA 유전자 염기서열분석을 통한 임상 미생물학에서의 세균동정

https://kosen.kr/info/kosen/273696

16S rRNA 및 Internal Transcribed Spacer 염기서열 분석법을 이용한 세균 및 진균 동정

https://synapse.koreamed.org/upload/synapsedata/pdfdata/0105kjcm/kjcm-13-34.pdf