추천 논문

제목Signaling pathways involved in ischemic stroke: molecular mechanisms and therapeutic interventions2023-09-19 12:10
작성자 Level 8

Signaling pathways involved in ischemic stroke: molecular mechanisms and therapeutic interventions

https://www.nature.com/articles/s41392-022-01064-1


Abstract

Ischemic stroke is caused primarily by an interruption in cerebral blood flow, which induces severe neural injuries, and is one of the leading causes of death and disability worldwide. Thus, it is of great necessity to further detailly elucidate the mechanisms of ischemic stroke and find out new therapies against the disease. In recent years, efforts have been made to understand the pathophysiology of ischemic stroke, including cellular excitotoxicity, oxidative stress, cell death processes, and neuroinflammation. In the meantime, a plethora of signaling pathways, either detrimental or neuroprotective, are also highly involved in the forementioned pathophysiology. These pathways are closely intertwined and form a complex signaling network. Also, these signaling pathways reveal therapeutic potential, as targeting these signaling pathways could possibly serve as therapeutic approaches against ischemic stroke. In this review, we describe the signaling pathways involved in ischemic stroke and categorize them based on the pathophysiological processes they participate in. Therapeutic approaches targeting these signaling pathways, which are associated with the pathophysiology mentioned above, are also discussed. Meanwhile, clinical trials regarding ischemic stroke, which potentially target the pathophysiology and the signaling pathways involved, are summarized in details. Conclusively, this review elucidated potential molecular mechanisms and related signaling pathways underlying ischemic stroke, and summarize the therapeutic approaches targeted various pathophysiology, with particular reference to clinical trials and future prospects for treating ischemic stroke.

댓글
자동등록방지
(자동등록방지 숫자를 입력해 주세요)

Antibody, Microbiome, Mitochondria, Nanobodies, Protein engineering, Identification of Bacteria, Systems Biology, Structural biology,


Nanobodies

A comprehensive comparison between camelid nanobodies and single chain variable fragments

https://biomarkerres.biomedcentral.com/articles/10.1186/s40364-021-00332-6

The Therapeutic Potential of Nanobodies

https://link.springer.com/article/10.1007/s40259-019-00392-z

A potent SARS-CoV-2 neutralising nanobody shows therapeutic efficacy in the Syrian golden hamster model of COVID-19

https://www.nature.com/articles/s41467-021-25480-z

An ultrapotent synthetic nanobody neutralizes SARS-CoV-2 by stabilizing inactive Spike

https://www.science.org/doi/10.1126/science.abe3255

Antibody

Antibodies to combat viral infections: development strategies and progress

https://www.nature.com/articles/s41573-022-00495-3

Microbiome

Gut microbiota in human metabolic health and disease

https://www.nature.com/articles/s41579-020-0433-9

Current understanding of the human microbiome

https://www.nature.com/articles/nm.4517

A framework for microbiome science in public health

https://www.nature.com/articles/s41591-021-01258-0

Mitochondria

Nuclear-embedded mitochondrial DNA sequences in 66,083 human genomes

https://www.nature.com/articles/s41586-022-05288-7

Protein engineering

Advances in protein structure prediction and design

https://www.nature.com/articles/s41580-019-0163-x

https://www.nature.com/subjects/protein-engineering

Identification of Bacteria

16S rRNA 유전자 염기서열분석을 통한 임상 미생물학에서의 세균동정

https://kosen.kr/info/kosen/273696

16S rRNA 및 Internal Transcribed Spacer 염기서열 분석법을 이용한 세균 및 진균 동정

https://synapse.koreamed.org/upload/synapsedata/pdfdata/0105kjcm/kjcm-13-34.pdf