추천 논문

제목Angina: contemporary diagnosis and management2023-09-19 11:06
작성자 Level 8

Angina: contemporary diagnosis and management

https://heart.bmj.com/content/106/5/387


Learning objectives

Around one half of angina patients have no obstructive coronary disease; many of these patients have microvascular and/or vasospastic angina.


Tests of coronary artery function empower clinicians to make a correct diagnosis (rule-in/rule-out), complementing coronary angiography.


Physician and patient education, lifestyle, medications and revascularisation are key aspects of management.


Introduction

Ischaemic heart disease (IHD) remains the leading global cause of death and lost life years in adults, notably in younger (<55 years) women.1 Angina pectoris (derived from the Latin verb ‘angere’ to strangle) is chest discomfort of cardiac origin. It is a common clinical manifestation of IHD with an estimated prevalence of 3%–4% in UK adults. There are over 250 000 invasive coronary angiograms performed each year with over 20 000 new cases of angina. The healthcare resource utilisation is appreciable with over 110 000 inpatient episodes each year leading to substantial associated morbidity.2 In 1809, Allen Burns (Lecturer in Anatomy, University of Glasgow) developed the thesis that myocardial ischaemia (supply:demand mismatch) could explain angina, this being first identified by William Heberden in 1768. Subsequent to Heberden’s report, coronary artery disease (CAD) was implicated in pathology and clinical case studies undertaken by John Hunter, John Fothergill, Edward Jenner and Caleb Hiller Parry.3 Typically, angina involves a relative deficiency of myocardial oxygen supply (ie, ischaemia) and typically occurs after activity or physiological stress (box 1).

댓글
자동등록방지
(자동등록방지 숫자를 입력해 주세요)

Antibody, Microbiome, Mitochondria, Nanobodies, Protein engineering, Identification of Bacteria, Systems Biology, Structural biology,


Nanobodies

A comprehensive comparison between camelid nanobodies and single chain variable fragments

https://biomarkerres.biomedcentral.com/articles/10.1186/s40364-021-00332-6

The Therapeutic Potential of Nanobodies

https://link.springer.com/article/10.1007/s40259-019-00392-z

A potent SARS-CoV-2 neutralising nanobody shows therapeutic efficacy in the Syrian golden hamster model of COVID-19

https://www.nature.com/articles/s41467-021-25480-z

An ultrapotent synthetic nanobody neutralizes SARS-CoV-2 by stabilizing inactive Spike

https://www.science.org/doi/10.1126/science.abe3255

Antibody

Antibodies to combat viral infections: development strategies and progress

https://www.nature.com/articles/s41573-022-00495-3

Microbiome

Gut microbiota in human metabolic health and disease

https://www.nature.com/articles/s41579-020-0433-9

Current understanding of the human microbiome

https://www.nature.com/articles/nm.4517

A framework for microbiome science in public health

https://www.nature.com/articles/s41591-021-01258-0

Mitochondria

Nuclear-embedded mitochondrial DNA sequences in 66,083 human genomes

https://www.nature.com/articles/s41586-022-05288-7

Protein engineering

Advances in protein structure prediction and design

https://www.nature.com/articles/s41580-019-0163-x

https://www.nature.com/subjects/protein-engineering

Identification of Bacteria

16S rRNA 유전자 염기서열분석을 통한 임상 미생물학에서의 세균동정

https://kosen.kr/info/kosen/273696

16S rRNA 및 Internal Transcribed Spacer 염기서열 분석법을 이용한 세균 및 진균 동정

https://synapse.koreamed.org/upload/synapsedata/pdfdata/0105kjcm/kjcm-13-34.pdf