추천 논문

제목Conceptual Evolution of Cell Signaling2023-09-19 23:05
작성자 Level 8

Conceptual Evolution of Cell Signaling

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6651758/


Abstract

During the last 100 years, cell signaling has evolved into a common mechanism for most physiological processes across systems. Although the majority of cell signaling principles were initially derived from hormonal studies, its exponential growth has been supported by interdisciplinary inputs, e.g., from physics, chemistry, mathematics, statistics, and computational fields. As a result, cell signaling has grown out of scope for any general review. Here, we review how the messages are transferred from the first messenger (the ligand) to the receptor, and then decoded with the help of cascades of second messengers (kinases, phosphatases, GTPases, ions, and small molecules such as cAMP, cGMP, diacylglycerol, etc.). The message is thus relayed from the membrane to the nucleus where gene expression ns, subsequent translations, and protein targeting to the cell membrane and other organelles are triggered. Although there are limited numbers of intracellular messengers, the specificity of the response profiles to the ligands is generated by the involvement of a combination of selected intracellular signaling intermediates. Other crucial parameters in cell signaling are its directionality and distribution of signaling strengths in different pathways that may crosstalk to adjust the amplitude and quality of the final effector output. Finally, we have reflected upon its possible developments during the coming years.


Keywords: cell signaling, signal transduction, crosstalk, receptor, ligand, evolution

댓글
자동등록방지
(자동등록방지 숫자를 입력해 주세요)

Antibody, Microbiome, Mitochondria, Nanobodies, Protein engineering, Identification of Bacteria, Systems Biology, Structural biology,


Nanobodies

A comprehensive comparison between camelid nanobodies and single chain variable fragments

https://biomarkerres.biomedcentral.com/articles/10.1186/s40364-021-00332-6

The Therapeutic Potential of Nanobodies

https://link.springer.com/article/10.1007/s40259-019-00392-z

A potent SARS-CoV-2 neutralising nanobody shows therapeutic efficacy in the Syrian golden hamster model of COVID-19

https://www.nature.com/articles/s41467-021-25480-z

An ultrapotent synthetic nanobody neutralizes SARS-CoV-2 by stabilizing inactive Spike

https://www.science.org/doi/10.1126/science.abe3255

Antibody

Antibodies to combat viral infections: development strategies and progress

https://www.nature.com/articles/s41573-022-00495-3

Microbiome

Gut microbiota in human metabolic health and disease

https://www.nature.com/articles/s41579-020-0433-9

Current understanding of the human microbiome

https://www.nature.com/articles/nm.4517

A framework for microbiome science in public health

https://www.nature.com/articles/s41591-021-01258-0

Mitochondria

Nuclear-embedded mitochondrial DNA sequences in 66,083 human genomes

https://www.nature.com/articles/s41586-022-05288-7

Protein engineering

Advances in protein structure prediction and design

https://www.nature.com/articles/s41580-019-0163-x

https://www.nature.com/subjects/protein-engineering

Identification of Bacteria

16S rRNA 유전자 염기서열분석을 통한 임상 미생물학에서의 세균동정

https://kosen.kr/info/kosen/273696

16S rRNA 및 Internal Transcribed Spacer 염기서열 분석법을 이용한 세균 및 진균 동정

https://synapse.koreamed.org/upload/synapsedata/pdfdata/0105kjcm/kjcm-13-34.pdf