생물학자는 유전자 발현과 기능을 연구하기 위하여 DNA 기술을 이용한다. (캠벨생명과학, 11판, p407) 생물학적 체계가 어떻게 작동하는지 보기 위해서, 과학자들은 그 체계의 각 성분들이 어떻게 기능하는지를 이해하려고 한다. 단일 또는 그룹 유전자가 언제 그리고 어디에서 발현되는지 분석하는 것은 그 유전자 기능에 대한 중요한 단서를 제공할 수 있다. 유전자 발현 분석하기 다세포 생물의 여러 세포 형태들, […]
DNA 미세배열은 RNA 발현 패턴과 그 외 다른 정보를 제공한다. (레닌저)생화학 제6판, p337 DNA 라이브러리, PCR 기술 및 부합화 기술이 함께 어우러져서 고안된 기술이 DNA 미세배열이다. 이기술을 이용하면 수천개의 유전자를 속히 동시에 가려낼 수 있다. 길이 상으로는 수십에서 수백여 개의 뉴클레오타이드로 구성된 알려진 유전자의 DNA 조각을 PCR에 의하여 증폭하고, 나노 리터 정도의 적은 양의 […]
바다 속으로 들어가면 주위 압력이 크게 상승한다. 이 상태에서 폐가 압착되지 않고 팽창을 유지하려면 흡입하는 공기도 고압으로 공급되어야 한다. 고압 공기를 흡입할 때 폐를 지나는 혈액은 폐포의 극단적으로 높은 기압에 노출되는데 이 상태를 고압증(hyperbarism)이라 한다. 이 고압 상태가 일정한 한계를 넘어서면 생리기능이 크게 변화하며 심할 경우 생명이 위험할 수 있다. 수심에 따른 기압 변화. 해수면 […]
저산소압이 인체에 미치는 영향 고도에 따른 대기압. 표 43-1은 고도에 따른 대기압과 산소압을 대략적으로 보여준다. 해수면에서의 대기압은 760 mm Hg, 10,000 feet (3050 m)에서는 523 mm Hg이고, 50,000 feet (15,250 m)에서는 87 mm Hg이다. 이런 대기압의 감소는 고소생리학(high altitude physiology)에서 다루는 모든 저산소증의 기본적 원인인데, 이는 대기압이 감소함에 따라 대기 중의 산소분압이 비례적으로 감소하기 […]
펌프로서의 심장의 기능을 어떻게 측정할 것인가? 한 가지 방법은 주어진 시간 동안에 심장에서 펌프되어 나오는 혈액량인 심박출량(cardiac output, CO)을 측정하는 것이다. 심장을 떠난 모든 혈액은 여러 조직으로 흐르기 때문에 심박출량은 몸 전체에 배분되는 전체 혈류를 나타낸다. 그러나 심박출량은 혈액이 어떻게 여러 가지 조직으로 배분되는지에 관한 정보를 알려주지는 않는다. 혈액의 흐름에 관한 그러한 분배는 조직 수준에서 […]
각 수축이 완전히 종료하였을 때에 심실에 잔류하는 혈액의 목적은 무엇인가? 그 한 이유로 잔류하는 65 mL의 수축기말 부피는 ‘위기상황에 대비한 여유(safety margin)’를 제공한다. 더 강력한 수축이 일어나면, 심장은 수축기말 부피를 감소시킨다. 따라서 더 많은 혈액이 조직으로 나간다. 많은 생리적 기능처럼, 일반적으로 심장은 모든 혈액을 다 사용하지 않는다. 한 번의 수축에서 하나의 심실이 퍼내는 혈액의 양을 […]